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Abstract. In this paper, a Blur Resilient target Tracking algorithm
(BReT) is developed by modeling target appearance with a groupwise
sparse approximation over a template set. Since blur templates of dif-
ferent directions are added to the template set to accommodate motion
blur, there is a natural group structure among the templates. In order to
enforce the solution of the sparse approximation problem to have group
structure, we employ the mixed `1 + `1/`2 norm to regularize the model
coefficients. Having observed the similarity of gradient distributions in
the blur templates of the same direction, we further boost the tracking
robustness by including gradient histograms in the appearance model.
Then, we use an accelerated proximal gradient scheme to develop an
efficient algorithm for the non-smooth optimization resulted from the
representation. After that, blur estimation is performed by investigating
the energy of the coefficients, and when the estimated target can be well
approximated by the normal templates, we dynamically update the tem-
plate set to reduce the drifting problem. Experimental results show that
the proposed BReT algorithm outperforms state-of-the-art trackers on
blurred sequences.

1 Introduction

Visual object tracking is an important topic in computer vision and it has many
applications, such as automatic surveillance, human computer interaction, ve-
hicle navigation, etc. Designing a useful real-world visual tracking algorithm is
very challenging, and tremendous efforts have been made toward handling is-
sues such as illumination changes [1], occlusions [2, 3], background clutter [4],
and abrupt motions [5]. However, most of the current trackers do not explic-
itly take motion blur into account, which is pervasive in the real videos when
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the targets move fast. One possible approach is to deblur the videos first before
performing tracking. Nevertheless, though some fast deblurring methods such as
[6, 7] have been recently developed, they are still computationally expensive. So
this approach is not suitable for time sensitive visual tracking tasks. Also, the
tracking performance will depend on the quality of deblurred videos directly.

Tracking through blur has been previously studied in [8–10]. In [8], blurred
regions are matched with a matching score governed by a cost function in terms
of region deformation parameters and two motion blur vectors, where the cost
function is optimized with a gradient-based search technique. In [9], a mean-shift
tracker is first used to locate the target. When the matching score is low, blur
detection and estimation is performed, then mean-shift with blur template is
applied. In [10], a blur driven tracker using sparse representation is proposed,
which incorporates blur templates of different directions into the template space
to model blur degradations. However, though the enhanced appearance space
is more expressive, ambiguity also increases. For example, a target candidate
that belongs to the background might be well represented by some blur tem-
plates. Also, the templates of the blur driven tracker are fixed, therefore when
the appearance of the target changes significantly, the tracker is susceptible to
drifting.

In this paper, we propose a robust blurred target tracking algorithm using
group sparse representation under a particle filter framework with enhanced
template space. Three components distinguish our work from previous ones: (1)
since blur templates of different directions are added to the template space and
the motion blur of the target always tends only one direction in a frame, there
is a natural group structure among the templates, i.e., the blur templates of
one direction belong to the same group. In order to enforce the solution of the
sparse representation of a target candidate to have group structure, we adopt
a structured sparsity inducing norm which is a combination of `1 norm and a
sum of `2 norms over groups of variables [11]; (2) to account for the increase of
ambiguity in the template space after enhancing it with blur templates, based
on the observation that blur templates of the same direction have much more
similar gradient histograms than blur templates in different directions, we use a
combination of the reconstruction error and a sum of weighted distances between
gradient histograms of a target candidate and each of the non-trivial templates
as loss function. The resulting non-smooth convex optimization problem is solved
using an accelerated proximal gradient method that guarantees fast convergence;
and (3) in order to capture the appearance changes of the target and reduce the
drifting problem, we perform blur detection by investigating the energy of the
reconstruction coefficients. The template set is updated dynamically when two
criteria based on the coefficients associated with templates are satisfied.

In the rest of the paper, related work is reviewed in §2. In §3, we present
the proposed tracking algorithm and the approach for solving the resulting non-
smooth convex optimization problem. §4 experimentally compares the proposed
tracker with several state-of-the-art trackers over blurred sequences. §5 concludes
the paper.
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2 Related Work

Due to the extensive literature about visual tracking, we only review the typi-
cal works and those most related to ours. For a through survey of the tracking
algorithms, we refer the readers to [12] or recent tracking evaluation papers [13–
16]. Current tracking algorithms can be categorized as either discriminative or
generative approaches. Discriminative approaches formulate tracking as a bi-
nary classification problem, the aim of which is to distinguish the target from
background. Typical discriminative tracking approaches include online boosting
[17], semi-online boosting [18], MIL tracking [19] and structured output tracking
[20]. Generative approaches are based on appearance model, where tracking is
performed by searching for the region most similar to the target model. Typical
generative tracking methods include mean shift tracker [21], eigentracker [22],
incremental tracker [23], and VTD tracker [24]. The appearance model is usu-
ally dynamically updated in order to adapt to the target appearance variations
caused by pose and illumination changes.

Sparse representation has been successfully applied to visual tracking in [25],
and further exploited in [26–28]. In [25], the tracker represents each target can-
didate as a sparse linear combination of dynamically updated templates, and the
tracking task is formulated as finding the candidate with the minimum recon-
struction error. In [26], a real-time L1 tracker is proposed by using accelerated
proximal gradient approach to solve a modified `1 norm related minimization
model with `2 norm regularization of the trivial templates. In [27], dynamical
group sparsity is used to explore the spatial relationship among discriminative
features and temporal relationship among templates. In [28], multi-task sparse
learning is adopted to mine the interdependencies among the target candidates
during tracking.

Among the previous works [8–10] on blurred target tracking, the work in
[10] is most related to ours in that both incorporate blur templates into the
appearance space. Our method is however different in several aspects: (1) our
method exploits the natural group structure among the templates by a structured
sparsity regularization; (2) our method integrates gradient information in the
appearance to boost the tracking robustness; and (3) we update the template
set dynamically guided by blur estimation so that our method is more robust to
target appearance variations.

3 Blur Resilient Tracking using Group Sparse
Representation

3.1 Review of the Blur-driven Tracker (BLUT)

We briefly review the blur-driven tracker (BLUT) proposed in [10], which is the
main inspiration of the proposed BReT tracker and we inherit its notations as
well.
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Fig. 1. Top left: The tracking results of BReT with and without gradient information,
indicated by red box and blue box respectively. Bottom left: the reconstruction error
of the two candidates measured by 0.5||Tc− y||22 using different tracking approaches.
Right: The group sparse representation of the two candidates using BReT with gra-
dient information, the L1 distance between the gradient histograms of the estimated
target and each of the selected templates are also given.

Particle Filter: The particle filter [29] is a Bayesian sequential importance sam-
pling technique for estimating the posterior distribution of state variables charac-
terizing a dynamic system. It uses finite set of weighted samples to approximate
the posterior distribution regardless of the underlying distribution. For visual
tracking, we use xt as the state variable to describe the location and shape
of the target at time t. Given all available observations y1:t = {y1,y2, . . . ,yt}
up to time t, the posterior p(xt|y1:t) is approximated by a set of N samples
{xt}Ni=1 with importance weights wit. The optimal xt is obtained by maximizing
the approximate posterior probability: x∗t = arg maxx p(x|y1:t).

Subspace Representation with Blur Templates: In order to model the blur
degradations, blur templates are incorporated into the appearance space in [10].
The appearance of the tracking target y ∈ Rd is represented by templates
T = [Ta,Tb, ηI],

y = [Ta,Tb, ηI]

 a
b
e

 =̂Tc, s.t. cT � 0, (1)

where Ta = [t1, · · · , tna ] ∈ Rd×na contains na normal templates, Tb = [t1,1, · · · , t1,nl
, · · · , tnθ,1, · · · , tnθ,nl ] ∈ Rd×nb contains nb blur templates, I is the d × d i-
dentity matrix containing the trivial templates used for modeling image cor-
ruption, η is used to control the weight of the trivial templates. Accordingly,
a = (a1, a2, · · · , ana)> ∈ Rna , and b ∈ Rnb are called normal coefficients and
blur coefficients respectively, e = (e1, e2, · · · , ed)> is called trivial coefficients,
c = [a>,b>, e>]> and cT = [a>,b>]>.

The first normal template t1 is obtained from the unblurred object patch of
the target in the first frame, which is usually selected manually or by detection
algorithms, other templates are shifted from it. Given a blur free patch I of the
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target, different blurred versions Ib of the target can be modeled as convolving
I with different kernels. In our framework, ti,j = t1 ⊗ ki,j is the (i, j)th blur
template, where ki,j is a Gaussian kernel that represents a 2D motion toward
direction θi with magnitude lj , where θi ∈ Θ = {θ1, · · · , θnθ}, and lj ∈ L =
{l1, · · · , lnl}. Consequently, we have nb = nθ × nl blur templates. Based on the
directions of the blur kernels, we have b = [b>1 , · · · ,b>nθ ]

> ∈ Rnb , where bi =

(bi,1, bi,2, · · · , bi,nl)> ∈ Rnl are the coefficients for the blur templates toward ith

direction.
Blur-driven Proposal Distribution: In [10], to use the estimated motion in-
formation from the sparse representation to guide the particle sampling pro-
cess, estimated motion information from different sources are integrated into
the proposal distribution, which is a combination of the first-order Markov
transition p(xt|xt−1), the second-order Markov transition p(xt|xt−1,xt−2), and
qi(xt|xt−1,yt−1) based on the blur motion estimation along direction θi.

3.2 Loss Function with Gradient Information

Incorporating blur templates into the appearance space allows for a more expres-
sive appearance space to model blur degradations. However, with the augmented
template space, ambiguity also increases, and some background might be well
represented by some blur templates, especially when only grayscale information
is used, as shown in Fig.1. In order to make the tracking algorithm more ro-
bust, based on the observation that though motion blur significantly changes
the statistics of the gradients of the templates, the blur templates in the same
direction have much more similar gradient histograms than blur templates of d-
ifferent directions, we propose to use the combination of the reconstruction error
and a sum of weighted distances between the target candidate and each of the
non-trivial templates as loss function.

For each template of [Ta,Tb], we calculate its gradient histogram by letting
each pixel vote for an gradient histogram channel, and get D = [d1,d2, · · · ,dna+nb ] ∈
Rh×(na+nb), where h is the number of bins of the gradient histogram; and for
the target candidate, we calculate its gradient histogram g ∈ Rh. Since we don’t
consider the trivial templates when calculating the sum of weighted distances,
we let d = [||d1 − g||1, ||d2 − g||1, · · · , ||dna+nb − g||1, 0, · · · , 0] ∈ R(na+nb+d)

indicate the distance between g and the gradient histogram of each element in
T. ||dc||22 is used to measure the sum of the weighted distances, and

1

2
||Tc− y||22 + β||dc||22 (2)

is used as the loss function.

3.3 Group Sparsity via `1 + `1/`2 Mixed Norm

For the augmented template set with blur templates of different directions, since
the motion blur of the target is always toward only one direction at time t, there is
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a natural group structure among the templates. The representation of the target
candidate should not only be sparse, but also have group structure, i.e., the
coefficients should also be sparse at the group level. In our tracking framework,
we divide the templates into ng = nθ +d+ 1 groups G = {G1, G2, · · · , Gnθ+d+1}
using the following scheme: the normal templates are in one group; the blur
templates in the same direction forms a group; and each trivial template is an
individual group. In order to capture the group information among the templates
and achieve sparsity at the same time, we employ a structured sparsity inducing
norm which combines the `1 norm and a sum of `2 norms over groups of variables
[11]. The mixed norm is known as “sparse group Lasso”.

Combining the loss function (2) and the `1 + `1/`2 mixed norm results in the
following non-smooth convex optimization problem:

min
c

1

2
‖Tc− y‖22 + β‖dc‖22 + λ1‖c‖1 + λ2

ng∑
i=1

‖cGi‖2,

s.t. cT � 0

(3)

where cGi are coefficients associated with Gi.
Once (3) is solved, the observation likelihood can be derived from the recon-

struction error of y as p(yt|xt) ∝ exp{−α||Tc − y||22}, where α is a constant
used to control the shape of the Gaussian kernel.

3.4 Solve (3) by Accelerated Proximal Gradient

To solve the non-smooth convex optimization problem in Eq.(3), we adopt the
accelerated proximal gradient method FISTA [30] which has convergence rate of
O( 1

k2 ), where k is the number of iterations. FISTA is designed for solving the
following unconstrained optimization problem:

min
z
F (z) = f(z) + g(z) (4)

where f is a smooth convex function with Lipschitz continuous gradient, and g
is a continuous convex function which is possibly non-smooth.

In order to solve Eq.(3) with FISTA, we let z = [z1, z2, · · · , zna+nb+d]> and
make the substitution c = [z21 , z

2
2 , · · · , z2na+nb , zna+nb+1, · · · , zna+nb+d]> to in-

corporate the explicit constraint in Eq.(3) into the objective function, and solve
the following optimization problem:

min
z

1

2
‖Tc− y‖22 + β‖dc‖22 + λ1‖z‖1 + λ2

ng∑
i=1

‖zGi‖2 (5)

where zGi is associated with group Gi. Then, Eq.(5) can be re-expressed as
Eq.(4), where

f(z) =
1

2
||Tc− y||22 + β||dc||22 (6)

and

g(z) = λ1||z||1 + λ2

ng∑
i=1

||zGi ||2 (7)
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To develop a proximal gradient method, the following quadratic approxima-
tion of F (z) at a given point z(k)is considered, for L > 0

QL(z, z(k)) =f(z(k)) + 〈z− z(k),∇f(z(k))〉

+
L

2
‖z− z(k)‖22 + g(z)

(8)

where ∇f(z(k)) is the gradient function of f(·) at point z(k).

Lemma 1 [30] Let f be a continuously differentiable function with Lipschitz
continuous gradient and Lipschitz constant L(f). Then, for any L ≥ L(f),

F (z) ≤ QL(z, z(k))

According to Lemma 1, given L ≥ L(f), a unique solution of F (z) can be
obtained by minimizing QL(z, z(k)),

pL(z(k)) = arg min
z

1

2
||z− ẑ||+ 1

L
g(z) (9)

where ẑ = z(k) − 1
L∇f(z(k)), and

∇f(z) = diag(w)(T>Tc−T>y) + 2βdiag(w)d>dc (10)

where w = [2z1, 2z2, · · · , 2zna+nb , 1, · · · , 1] ∈ Rna+nb+d. Eq.(9) just ignores the
constant z(k) in Eq.(8), and the minimum of Eq.(8) can be obtained by solving
Eq.(9). Alg. 1 describes FISTA with backtracking.

Algorithm 1 FISTA with backtracking [30]

Input: L0 > 0, τ > 1, v(1) = z(0), t1 = 1
1: for k=1,2,..., iterate until convergence do
2: set L = Lk−1

3: while F (pL(v(k))) > QL(pL(v(k)),v(k)) do
4: L = τL
5: end while
6: set Lk = L and update
7: z(k) = pLk (v(k)),

8: tk+1 =
1+
√

1+4t2
k

2
,

9: v(k+1) = z(k) + ( tk−1
tk+1

)(z(k) − z(k−1))

10: end for

A critical step of Alg. 1 is to solve Eq.(9) efficiently. Since the `1+`1/`2-norm
is a special case of the tree structured group Lasso, Eq.(9) can be converted to

pL(z(k)) = arg min
z

1

2
||z− ẑ||+

m∑
i=0

ni∑
j=1

wij ||zGij ||2 (11)



8 P. Liang et al.

where m is the depth of the index tree defined in [31], ni is the number of
groups at depth i, wij ≥ 0(i = 0, 1, · · · ,m, j = 1, 2, · · · , ni) is the pre-defined

weight for group Gij . We apply the MYtgLasso algorithm [31] to solve Eq.(11)
efficiently. MYtgLasso algorithm maintains a working variable u initialized with
ẑ, then it traverses the index tree in the reverse breadth-first order to update u
with ui

Gij
= ui+1

Gij
max

(
0, 1− wij/

∥∥ui+1
Gij

∥∥).
The time complexity of MYtgLasso algorithm is O(mn), where n is the dimen-

sion of z. After converting Eq.(9) to Eq.(11), the index tree has a constant depth
2, so the time complexity for solving Eq.(9) is O(n), where n = na + nb + d.

3.5 Template Update with Blur Detection

In order to capture the appearance variations of the target caused by illumination
or pose changes, the template set needs to be updated during tracking. Since the
appearance of the target is corrupted when heavy blur appears, updating the
template set with heavily blurred target cannot capture the appearance changes
of the target. So we propose to perform blur detection of the tracking result
before updating the template set.

To detect blur, we investigate the response of both normal coefficients and
blur coefficients obtained from solving the optimization problem Eq.(3). If the
target is not blurred, the energy of the normal coefficients will be dominant.

One criterion for updating the template set is E(a)
E(a)+E(b) > 0.9, where E(·)

represents the energy which is the sum of the absolute value of the corresponding
coefficients. Also, trivial templates are activated when the target cannot be well
approximated by the template set. In order to avoid contaminating the template

set, another criterion for updating template set is E(e)
E(a)+E(b)+E(e) < 0.1. When

the target is not similar to any of the normal templates, and both of the above
two criteria are satisfied, we replace the normal template having lowest response
with the target template.

Algorithm 2 BReT: Blur resilient tracker

Input: Current frame Ft, sample set St−1, template set Tt−1

1: for i = 1 to N do
2: Draw N particles xi

t with the blur driven proposal distribution
3: Obtain the candidate patch yi

t of xi
t

4: Solving the optimization problem (3)
5: Calculate the observation likelihood p(yi

t|xi
t)

6: end for
7: Locate the target x∗

t with the maximum observation likelihood
8: Estimate motion from blur via the blur coefficients of the estimated target
9: Update the template set Tt with blur detection

10: Update the sample set St by resampling with p
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4 Experiments

We implemented the proposed algorithm with MATLAB R2011b, and the SLEP
package [32] is used to solve Eq.(11). In our tracking framework, the state vari-
able xt is modeled by four parameters xt = (tx, ty, s, θ), where (tx, ty) are the 2D
translation parameters, s is the scale variation parameter, and θ is the rotation
variation parameter. In our experiment, na = 10 normal templates are used, and
we set nθ = 8, nl = 4, so there are 10 + 8×4 = 42 non-trivial templates in total.
For the optimization problem Eq.(3), we set β = 0.35, λ1 = 0.03, λ2 = 0.03; for
the number of bins of the gradient histogram, we set h = 19; and for the weight
of trivial templates, we set η = 0.15. These parameters are kept the same for all
the sequences.

To evaluate the performance of the blurred target tracking algorithm, we
compile a set of 12 challenging blurred tracking sequences, denoted as owl, face,
body, car1, car2, car3, car4, jumping, running, cola, dollar and cup. The se-
quences owl, face, body, car1, car2, car3 and car4 were used in [10] and can be
downloaded from an online source including the ground truth.1 The sequence
jumping and the associated ground truth can be downloaded from an online
source.2 For the sequences running, cola, dollar and cup, we collected them our-
selves and labeled the ground truth manually, and these four sequences contain
2400 frames. In total we use 6235 frames for the experiments.

We compared the proposed BReT algorithm with seven state-of-the-art visual
trackers: VTD [24], L1APG [26], IVT [23], MIL [19], OAB [17], Struck [20] and
BLUT [10]. We use the publicly available source codes or binaries from the
referenced authors with the same initialization of the target in the first frame.
We first used the default parameter settings of the above trackers to evaluate
them. Nevertheless, all but the BLUT [10], which is specifically designed for
blurred target tracking, failed on most of the sequences. One critical reason for
the failure of these trackers is that the search radius is not large enough or the
variance of the motion model under the particle filter framework is not large
enough to cover the fast motion in these blurred sequences. So we tuned each
of these trackers specifically. We increased the search radius of Struck from 30
to 100, and the search radius of MIL and OAB from 25 to 100. For L1APG,
VTD, IVT and BReT which use the particle filter technique, we set the number
of particles to N = 600. For L1APG and IVT, we set the variance of the motion
model the same as BReT. For VTD, since the binary code has a predefined value
for the variance of the motion model and only allows the user to specify how
many times to enlarge or shrink this value, we set the variance ten times as large
as the predefined one. For BLUT, the parameter setting provided in the original
code works better, so we kept it unchanged. Among all these trackers, only VTD
uses color information, while the others only use grayscale information.

1 http://www.dabi.temple.edu/ hbling/data/TUblur.zip
2 http://cvlab.hanyang.ac.kr/tracker benchmark/seq/Jumping.zip
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

Fig. 2. Tracking results of eight algorithms on 12 sequences. The name of the sequences
are (a) running, (b) cola, (c) dollar, (d) cup, (e) owl, (f) face, (g) body, (h) car1, (i)
car2, (j) car3, (k) car4 and (l) jumping.
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4.1 Qualitative Evaluation

The sequence running was captured outdoors, a person is running on the play-
ground while being videotaped by another person who is also running. Some
tracking results are shown in Fig. 2(a). Both our tracker and VTD track the
target well. Without using color information, the target is very similar to the
grass, especially when blur appears. We believe that the success of VTD on this
sequence can be attributed to the use of color information.

In the sequence cola, a moving cola can was tracked, as shown in Fig. 2(b).
When blur appears, it is hard to distinguish the target from the sofa and the
clothes of the person with only grayscale information. The appearance of the
target also changed slightly by rotation. Our tracker and VTD perform well on
this sequence, while the other trackers start to fail when heavy blur appears.

Results on the sequence dollar are shown in Fig. 2(c), in which a paper dollar
was tracked. Our tracker is capable of tracking the target for most frames of the
sequence. MIL also exhibits comparable results, but starts to lose the target
completely at frame 505.

Fig. 2(d) demonstrates the results of the cup sequence. Our tracker, Struck
and MIL can track the target for almost all frames. Other trackers often locate
the area near the edge between the indicator board and the wall as target. A
possible reason is that there is a white stripe containing characters in the top of
cup surface, and the rest of the surface of the cup is blue in general.

In the sequence owl, a plane object was tracked as shown in Fig. 2(e). VTD
starts to fail at frame 46 and locates a sign that has similar color as the target.
IVT starts to fail at frame 183. Our tracker, BLUT, Struck, L1APG can track
the target accurately through the whole sequence. MIL and OAB also obtain
comparable results on this sequence.

Results on the sequence face are shown in Fig. 2(f), in which the target is
not only blurred but also has slight pose variation. All the trackers except OAB
perform well on this sequence, while OAB meets problems from frame 68.

Results on the sequence body are given in Fig. 2(g). A person is walking in
this sequence, and most of the frames are severely blurred. IVT cannot correctly
obtain the direction of the target. Though OAB does not completely lose the
target through the sequence, for most of the sequence, it cannot get the accu-
rate position of the target. Other trackers works well on this sequence and get
comparable results.

The sequences car1,car2, car3, car4 are captured from outdoor traffic scenes.
The results for car1 are shown in Fig. 2(h). OAB starts to drift at frame 100,
MIL, IVT and L1APG start to drift at frame 533 when very heavy blur appears.
Our tracker, BLUT, Struck and VTD can track the target successfully for most
of the frames. Fig. 2(i) shows the results on car2, MIL and OAB perform poorly,
and start to drift at frame 107 and frame 77 respectively. Other trackers work
well on this sequence, and our tracker, BLUT, L1APG, VTD, IVT perform a
little better than Struck. Fig. 2(j) gives the results on car3. IVT lost the target
at frame 121, Struck lost the target at frame 186 and the sky was tracked as the
target by Struck. Results of sequence car4 are given in Fig. 2(k), where OAB
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starts to locate the target inaccurately from frame 34. Our tracker, VTD and
Struck get excellent results on this sequence.

Fig. 2(l) shows the results of jumping, in which the target was jumping and
causing obvious motion blur. Compared with other sequences, the motion in
jumping is relatively simple, mainly includes up and down motion. All the track-
ers except BLUT and VTD perform well on this sequence.

4.2 Quantitative Evaluation

Table 1. Success rate of the trackers (median). The best, second and third bests are
in red, blue and green respectively.

Video MIL OAB VTD IVT Struck L1APG BLUT Ours

running 0.03 0.05 0.88 0.07 0.45 0.16 0.07 0.85

cola 0.10 0.07 0.73 0.06 0.14 0.04 0.06 0.81

dollar 0.78 0.42 0.43 0.33 0.17 0.17 0.09 0.90

cup 0.95 0.11 0.65 0.11 0.97 0.42 0.11 0.99

owl 0.71 0.68 0.07 0.28 0.99 0.98 1.00 1.00

face 0.76 0.14 1.00 0.95 1.00 0.96 0.98 0.99

body 0.59 0.09 0.56 0.20 0.88 0.65 0.67 0.77

car1 0.72 0.15 0.99 0.70 0.99 0.69 0.99 0.99

car2 0.41 0.12 0.94 0.96 0.88 0.98 0.97 0.99

car3 0.74 0.93 0.89 0.33 0.54 0.99 0.94 1.00

car4 0.68 0.11 1.00 0.75 0.99 0.71 0.69 0.97

jumping 0.92 1.00 0.11 1.00 1.00 1.00 0.03 0.99

median 0.72 0.13 0.81 0.33 0.93 0.70 0.68 0.99

We use two criteria to evaluate these trackers quantitatively. We first use the
percentage of frames for which the estimated target location is within a threshold
distance from the ground truth to measure the success rate of each tracker, and
we use 15 pixels as the threshold. Since all these trackers involve randomness,
we run each tracker five times on all the sequences, and report both the median
result and the average result with standard deviation. Table 1 summarizes the
results using median, and the results of mean with standard deviation are given
in Table 2. We also plot the center location error of each tracker on all the
sequences over time according to the median results, as shown in Fig. 3. From
the results, we can see that our tracking algorithm works favorably against state-
of-the-art methods. The good performance can be attributed to the use of group
sparse representation to approximate the target candidate and incorporating
gradient information to the loss function to reduce the ambiguity of the enhanced
appearance space.
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Table 2. Success rate of the trackers (mean±standard deviation). The best, second
and third bests are in red, blue and green respectively.

Video MIL [19] OAB [17] VTD [24] IVT [23] Struck [20] L1APG [26] BLUT [10] Ours

running 0.06±0.05 0.07±0.04 0.91±0.04 0.07±0.02 0.45±0.00 0.17±0.08 0.07±0.01 0.70±0.28
cola 0.12±0.04 0.09±0.04 0.72±0.06 0.05±0.02 0.15±0.06 0.04±0.02 0.07±0.03 0.78±0.12
dollar 0.74±0.13 0.33±0.13 0.47±0.07 0.33±0.00 0.30±0.32 0.29±0.27 0.10±0.04 0.73±0.32
cup 0.82±0.24 0.27±0.37 0.68±0.09 0.20±0.21 0.80±0.33 0.42±0.19 0.11±0.01 0.99±0.00
owl 0.77±0.18 0.64±0.34 0.07±0.00 0.27±0.03 0.98±0.00 0.91±0.17 1.00±0.00 1.00±0.00
face 0.79±0.06 0.13±0.06 1.00±0.00 0.95±0.03 1.00±0.00 0.77±0.29 0.98±0.01 0.99±0.00
body 0.53±0.21 0.09±0.03 0.55±0.10 0.17±0.09 0.88±0.01 0.60±0.20 0.68±0.03 0.77±0.03
car1 0.71±0.19 0.18±0.06 0.99±0.01 0.80±0.15 0.99±0.00 0.69±0.00 0.99±0.00 0.99±0.00
car2 0.41±0.15 0.11±0.06 0.78±0.36 0.93±0.08 0.88±0.00 0.98±0.01 0.97±0.01 0.99±0.00
car3 0.71±0.21 0.80±0.29 0.91±0.08 0.60±0.37 0.53±0.01 0.86±0.30 0.95±0.05 1.00±0.00
car4 0.74±0.13 0.16±0.12 0.95±0.11 0.75±0.03 0.99±0.00 0.74±0.09 0.67±0.05 0.97±0.02

jumping 0.89±0.15 1.00±0.00 0.18±0.10 0.92±0.18 1.00±0.00 1.00±0.00 0.03±0.02 0.98±0.03
mean 0.61±0.27 0.32±0.31 0.68±0.31 0.50±0.36 0.75±0.31 0.62±0.32 0.55±0.43 0.91±0.12

5 Conclusion

We propose a robust blurred target tracking algorithm using group sparse repre-
sentation. The proposed algorithm exploits the natural group structure among
templates by employing a `1 + `1/`2 mixed norm. We also incorporate the ap-
pearance information from gradient histograms in a loss function that helps re-
duce the ambiguity of the enhanced appearance space. An accelerated proximal
gradient approach is adopted to solve the resulting non-smooth convex opti-
mization problem. In addition, we dynamically update the template set with
blur detection to make the tracker more robust to appearance variations of the
target. Finally, we compared our tracker with seven state-of-the-art trackers on
12 blurred sequences to demonstrate the effectiveness and robustness of the pro-
posed tracker.
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